RECOGNISING ACHIEVEMENT

GCE

Physics B (Advancing Physics)

Advanced GCE
Unit G494: Rise and Fall of the Clockwork Universe

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations in scoris

Annotation	Meaning
[id]	Benefit of doubt given
[$4 \cdot 1$]	Contradiction
3	Incorrect response
[F[]	Error carried forward
\square	Follow through
[D]	Not answered question
Pi	Benefit of doubt not given
区-1]	Power of 10 error
-	Omission mark
-1]	Rounding error
	Error in number of significant figures
-	Correct response
[-7	Arithmetic error
6	Wrong physics or equation

Annotations in Mark Scheme

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject Specific Marking Instructions

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

Question		Answer	Marks	Guidance
5	(a)	change of $\mathrm{KE}=0.5 \times 1.8\left(2.9^{2}-0.52^{2}\right)=7 . \underline{3}(3) \mathrm{J}$	1	look for correct method as well as correct answer to at least 1 d.p.
	(b)	$\begin{aligned} & \text { change of GPE }=1.8 \times 9.8 \times(0.73-0.11)=10.9 / 11 \mathrm{~J} \text {; } \\ & \text { work done }=10.9-7.3=3.6 \mathrm{~J} ; \end{aligned}$	2	no ecf from incorrect GPE change KE change $=7.0 \mathrm{~J}$ gives $3.9 / 4(.0) \mathrm{J}$ for (2) not-3.6 J
6		$\begin{aligned} & \text { EITHER } \\ & \text { initial } p=1200 \times 2.3-830 \times 3.7=-3.1 \times 10^{2} \mathrm{Ns} \text {; } \\ & \text { OR } \\ & 1200 \times 2.3-830 \times 3.7=(1200+830) \times v \text {; } \\ & \text { THEN } \\ & \text { final velocity }=-3.1 \times 10^{2} / 2030=-0.15(3) \mathrm{m} \mathrm{~s}^{-1} \text {; } \end{aligned}$	3	calculation of initial momentum (1) calculation of final speed for (1) no ecf from incorrect initial p negative final velocity (1) accept to the left instead of -
7			1	

Question			Answer	Marks	Guidance
11	(a)	(i)	$\begin{aligned} & T=15+273=288 \mathrm{~K} \\ & N=p V / k T=5.7(0) \times 10^{24} \end{aligned}$	2	ecf any incorrect T : e.g. $T=15 \mathrm{~K}$ gives 1.09×10^{26} for (1)
		(ii)	correct use of $\Delta E=k \Delta T$ per particle, $\Delta E=N k \Delta T=2.8 \times 10^{3} \mathrm{~J} ;$	2	$\begin{aligned} & 3 / 2 \mathrm{NkT} \text { gives } 4.2 \times 10^{3} \mathrm{~J} \text { for }(2) \\ & N=6 \times 10^{24} \text { gives } 2.9 \times 10^{3} / 3 \times 10^{3} / 4.4 \times 10^{3} \mathrm{~J} \text { for (2) } \\ & \text { accept } 4.9 \times 10^{-22} / 7.4 \times 10^{-22} \mathrm{~J} \text { for (1) } \\ & \text { ignore sign of answer } \end{aligned}$
	(b)	(i)	any three of the following, (1) each particle energy / speed / momentum decreases; collision frequency (with surface) decreases; momentum change per collision decreases; force on surface is rate of change of momentum; pressure is (average) force per unit area;	3	QWC: third mark can only awarded if answer describes changes of particle properties. not fewer collisions ignore statements linked to rise in temperature
		(ii)	$\begin{aligned} & \hline \text { use of } p V=N k T ; \\ & 8.8 \times 10^{4} \mathrm{~Pa} \text {; } \end{aligned}$	2	accept use of $P / T=$ constant $N=6 \times 10^{24}$ gives $9(.2) \times 10^{4} \mathrm{~Pa}$ for (2) otherwise no ecf on incorrect N
	(c)		$\begin{aligned} & \frac{2}{500}=\frac{e^{\varepsilon / k 288}}{e^{\varepsilon / k 253}}=e^{\frac{\varepsilon}{k}\left(\frac{1}{288}-\frac{1}{253}\right)}=e^{-3.4 \times 10^{19} \varepsilon} \\ & \ln \left(4 \times 10^{-3}\right)=-3.4 \times 10^{19} \times \varepsilon, \text { so } \varepsilon=1.6 \times 10^{-19} \mathrm{~J} \end{aligned}$	3	correct substitution of all data (1) method i.e. anything which eliminates C (1) correct evaluation - no ecf on incorrect substitution (1)
			Total	12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

