

Physics B (Advancing Physics)

Advanced GCE

Unit G495: Field and Particle Pictures

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

C	Question	Expected Answer N _s = (3800x15)/230 (1) = 250 turns (1)	Mark	Rationale/Additional GuidanceOnly one mark for 247.8 or 247; 248 ok.
1	а		2	
	b	Magnetic flux linkage (1)	1	
2	а	Equipotential line curved, crossing field lines at right angles (1)	1	Mark in area of field shown.
	b	Separation of field lines changes (1)	1	Accept equipotential lines are curved; accept field lines are curved/not parallel
3		mass defect = 1.0×10^{-29} (1) E = $1.0 \times 10^{-29} \times 9 \times 10^{16}$ = 9×10^{-13} J (1)	2	
4		Potential difference (1) between x_1 and x_2 (1)	2	Second mark is dependent on first. Accept work done (energy) in moving unit charge between x_1 and x_2 ; accept voltage for p.d.
5	a	3.0 x 10 ⁻¹⁰ m	1	
	b	two loops	1	Must be drawn at n = 2
6	а	photon		
	b	positron		
	С	neutron	3	
7	а	proton	1	
	b	Energy is transferred to create new particles (1) possessing k.e. (1)	1	Energy transfer to new particles worth 1 mark
8	а	Correct line (1)	1	Continuous loop within iron linking through stator coil
	b	S pole at the top of the rotor, N pole at lower end (1)	1	
9		top line, B, (1) bottom line C (1)	2	
		Total Section A	[21]	

Q	Question		Expected Answer	Mark	Rationale/Additional Guidance	
10	а	i	Greater proportion deflected (1) a greater chance of close approach to a nucleus (1)	2	Accept more particles bounce back Accept more layers but not just more nuclei	
		ii	Smaller proportion deflected (1) as less time spent near nuclei (1) AW	2	Accept less particles bounce back Accept increased velocity/momentum arguments but not just KE	
	b	i	5 MeV(1)	1	Not -5 MeV	
		ii	$5 \times 10^{6} \times 1.6 \times 10^{-19} = 8 \times 10^{-13} (1) \text{ J}$	1	Allow ecf including - value	
		iii	$r = \frac{2 \times 79 \times (1.6 \times 10^{-19})^2}{8 \times 10^{-13}} \times 9 \times 10^9 (1)$ = 4.55 x 10 ⁻¹⁴ m (1)	2	Allow ecf Accept 4.5, 4.6 or 5 x 10 ⁻¹⁴ m	
	С		Ratio of volumes = $(6 \times 10^{-5})^3 (1) = 2.16 \times 10^{-13}$ Density = 1.9 x $10^4/2.16 \times 10^{-3} = 9 \times 10^{16}$ kg m ⁻³ (1) Assumption: e.g. all mass in nucleus or no volume between gold atoms (1) AW	1	Allow electrons have no mass	
			Total	[11]		

Q	uesti	ion	i ¹³¹ ₅₄ Xe (1)	Mark	Rationale/Additional Guidance
11	а	i		1	
		ii	anti-lepton (1)	1	
	b	i	initial activity = $(4 \times 10^{-11}/131) \times 6.02 \times 10^{23} \times 1.0 \times 10^{-6} (1)$		
			= 1.8(4) x 10 ⁵ Bq (1)	2	
		ii	$A/A_0 = e^{-\lambda t} = e^{-1 \times 10^{\Lambda} - 6 \times 50 \times 24 \times 60 \times 60} (1)$ = e^{-4.32} = 0.013 (1) = 1%	2	Or working from A/A ₀ = 0.01 In 0.01 = $-\lambda t$ -4.6 = $-1 \times 10^{-6} t (1)$ t = 4600000 = 53.2 days (1) Or 6.64 half lives from 1% activity (1) leading to 53 days (1) Or 6.25 half lives so $2^{6.25}$ (1)leading to 1.3% activity (1) Working showing between 6 and 7 half lives worth 1 mark
		iii	Energy = $(4 \times 10^{-11}/131) \times 6.02 \times 10^{23} \times 1 \times 10^{-13}$ = 0.0184 J (1) dose = $(0.0184)/0.05 = 0.37$ Gy (1)	2	May see 1.84 x 10 ¹¹ decays from bi
		iv	Assumes all energy transferred in gland (1) All iodine decayed (in gland) (1)	2	Accept all beta particles absorbed in gland Do not accept iodine may have decayed before entering gland
			Total	[10]	

G195	
0733	

Q	Question		Expected Answer		Rationale/Additional Guidance
12	а	i	B (1)	1	
		ii	$70 \times 10^{3}/0.2 = 3.5 \times 10^{5} \text{ V m}^{-1}$ (1)	1	
	b		$E = 9.1 \times 10^{-31} \times 9 \times 10^{16} (1) = 8.2 \times 10^{-14}$	1	Accept clear working or own answer. Do not penalise rounding error to 8.1
	С	i	$\gamma = (8.2 \times 10^{-14} + 1.1 \times 10^{-14})/8.2 \times 10^{-14} = 1.1 (1)$	1	Do not allow ecf from "show that"
		ii	B	1	
	d		γ factor is about 1.1 (1)		New calculation or statement that $\boldsymbol{\gamma}$ factor is similar to previous value.
			Comparison with γ factor = 1 (1)		
			Consistent conclusion (1)	3	Can be argued either way; dependent on 2 nd mark
			Total	[8]	

Q	uesti	on	Expected Answer	Mark	Rationale/Additional Guidance
13	а	i	i f = 1/0.04= 25 Hz(1)	1	
	b		Clear use of $\varepsilon = Nd\phi/dt$ (1)	3	
			Max emf = 2.5 V(1)		
			$d\Phi/dt = 2.5/700 = 0.00357$ (1) Wb s ⁻¹		Need own answer
	c		max flux = 0.0036/(2 x π x 25) = 2.27 x 10 ⁻⁵ Wb (1)	3	$cos2\pi ft = 1$ can be implicit; or can substitute t = 0, 20ms or 40ms.
			max flux density =2.27 x 10 ⁻⁵ / 0.000625 (1)		independent method mark for dividing by area = 0.000625
			= 0.036 T (1)		or 0.037 with intermediate rounding. Don't allow 1SF answer. Dependent on both previous marks unless POT error.
	d		Any two from: stronger magnet (1) larger number of turns on coil (1) reduced air gap (1) core of larger c.s. area AW (1) laminated core (1) core of higher permeability AW (1)	2	Allow "more coils"
			Total	[9]	

Mark Scheme

C	Question		Expected Answer	Mark	Rationale/Additional Guidance
14			d = v x t = (70 x 1.6) x 1 = 112 km (1)	1	
			Total	[1]	

Q	Question		Expected Answer	Mark	Rationale/Additional Guidance
15	а		$10^{6} / (60 \times 60) = 277.7 W$ (1)	1	Accept clear working or own answer. Do not penalise rounding error to 277
	b		No energy absorbed from sun (1) so suit needs to radiate less energy (1) So pumping rate of LCVG will need to decrease (1)	3	Allow: ambient temperature is lower in dark area(1) So rate of heat loss from suit is higher (1) Dependent on scoring at least one of the first two marks.
		_			QWC: complete and clear argument required for 3 marks.
	С	i	mass = density x volume = 1.4×0.058 = $81 \text{ g}(1)$	1	Accept clear working or own answer.
		ii	Heating provided = 280 W x 5 s = 1400 J (1) ⇒ temp rise = 1400 / (0.081 x 900) = 19.2 °C (1)	3	0.080 kg gives 19.4 ⁰ C
			final temp = $18 + 19.2 = 37.2 ^{\circ}C(1)$		Independent mark for adding calculated temperature rise to 18
		iii	Use $p_1V_1 / T_1 = p_2V_2 / T_2 (1)$ $\Rightarrow p_2 / p_1 = (273 + 37.2) / (273 + 18) = 1.065 (1)$	2	Or use of $P \propto T$ (1) 2.07 from use of Celsius temperatures will score 1 Allow ecf from cii
			Total	[10]	

Q	uesti	ion	Expected Answer	Mark	Rationale/Additional Guidance
16	а		Idea of constant ratio property or of rate of change of parameter being proportional to the value of the parameter itself (1) Selection of three appropriate data pairs from graph (1) One calculation performed (1) Second calculation performed (1) Conclusion relating data to exponential nature of relationship (1)	5	To award 5/5 technical terms must be correctly spelled e.g. exponential, proportional, gradient, ratio
	b		In suit, pressure is smaller => less gas particles per unit volume. (1) Fraction of these which are oxygen molecules is larger. (1)	2	Accept less mass of gas, fewer moles of gas, but not less volume or "less gas" Allow reverse argument May see factor of 3 in number of particles m ⁻³ & factor of 5 in proportion of O_2
			Total	[7]	

G495	Mark Sche	January 201 ²	
Question	Expected Answer		Rationale/Additional Guidance
17	A material made of two different substances (1) which combines the favourable properties of the individual substances (1)	4	Allow more/several
	Example, quoting component substances (1)		PTFE-coated silica fibre or aluminium coated polymer. If synthetic rubber, must identify two materials used
	Beneficial properties of component parts (1)		Two correct identified properties.
	Total	[4]	

Q	Question		Expected Answer	Mark	Rationale/Additional Guidance
18	а		KE = $\frac{1}{2}$ m v ² = $\frac{1}{2}$ 1.0 x 10 ⁻⁶ x (50 x 10 ³) ² (1) = 1250 J (1)	2	Need own answer for second mark
	b	i	Energy available for vaporisation = 0.9 x 1.25 kJ	2	
			= 1125 J (1)		Accept calculations based on 1kJ leading to
			mass vaporised = $1125 / 10.5 \times 10^6 = 1.1 \times 10^{-4} \text{ kg}(1)$		8.6 x 10 ⁻⁵ kg. Accept reverse argument.
		ii	Volume = mass / density (1)	3	Allow ecf
			\Rightarrow 1/2 x 4/3 π r ³ = 1.1 x10 ⁻⁴ / 2400 (1)		Missing ½ gives answer 2.2 x 10 ⁻³ m worth 1 mark
			\Rightarrow r = 2.8 x 10 ⁻³ m(1)		overall
			Total	[7]	

Q	Question		Expected Answer	Mark	Rationale/Additional Guidance
19	а	i	no. of protons = $10^9 / 1.7 \times 10^{-27}$ (1) = 5.9 x 10^{35} (1)	2	Need own value for second mark. Allow reverse arguments leading to $1.0(2) \times 10^{9}$ kg or 1.67×10^{-27} kg
		ij	Flux = 6 x 10 ³⁵ / (4 π x (1.5 x 10 ¹¹) ²) (1) = 2.1 x 10 ¹² m ⁻² s ⁻¹ (1)	2	Need own value for 2^{nd} mark. For information $4\pi r^2 = 2.8 \times 10^{23}$
	b	i	$(1.6 \times 10^{-16}) \times 2.1 \times 10^{12} \times 1.5 = 0.0005(04) \text{ J} (1)$	1	Allow 0.00048J
		ii	Any three valid points from: Calculation of dose = energy kg ⁻¹ (1) Calculation of effective dose = $20 \times dose$ (1) (Effective) dose reduced by suit (1) 3% to 5% cancer risk per Sv (1) Consistent risk conclusion (1)	3	ecf from bi. Accept astronaut masses 40 – 125kg Must be some element of comparison
			Total	[8]	

Question		ion	Expected Answer	Mark	Rationale/Additional Guidance
20	а	i	Momentum = mass x velocity = $5 \times 225 = 1125(1)$	1	Need clear working or own value.
		ii	F = ma = 225 x 4/20 = 45 N (1) Then, F = $\Delta p/\Delta t$ = v $\Delta m/\Delta t$ (1) ⇒ $\Delta m/\Delta t$ = F/v = 45/600 = 0.075 kg/s (1)	3	Or correct use of conservation of momentum (1), find mass of gas = 1.5kg (1) and divide by 20 s. (1)
			Total	[4]	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

