RECOGNISING ACHIEVEMENT
GCE

Physics B (Advancing Physics)

Advanced GCE
Unit G495: Field and Particle Pictures

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations available in Scoris

Annotation	Meaning
[[1]	Benefit of Doubt given
[$\mathrm{H}^{1 / 1]}$	Contradiction
3	Incorrect Response
[F]	Error Carried Forward
-T]	Follow through
[10]	Not answered question
\cdots	Benefit of doubt not given
HiT	Power of 10 error
-	Omission Mark
ㅁ:7	Rounding Error
\square	Error in number of Significant figures
-	Correct Response
\square	Arithmetic error
?	Wrong physics equation

Annotations in detailed mark scheme

Annotation	Meaning
$/$	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative Wording
ORA	Or reverse argument

Question		Answer		Marks	Guidance
1	(a)	Wb m ${ }^{-2}$		1	
	(b)	$\begin{aligned} & \mathrm{J} \mathrm{C}^{-1} \\ & \mathrm{~Wb} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
2	(a)	$E=m^{2} v^{2} / 2 m$ shown		1	Allow: any consistent method Allow: reverse argument
	(b)	$E_{k}=h^{2} / 2 m \lambda^{2}$ shown		1	Allow: any consistent method Allow: reverse argument
	(c)	wavelength $=3.5 \times 10^{-10} \mathrm{~m}$		1	
3	(a)	C		1	
	(b)	A		1	
4		$\mathrm{E}=3000 / 4 \times 10^{-4}=7.5 \times 10^{6}\left(\mathrm{~V} \mathrm{~m}^{-1}\right)$		1	
5		${ }_{1}^{0} x$ positron/anti-electron		2	Allow: beta-plus Allow: ecf from incorrect numbers Allow: positron etc as independent mark
6		Curving upwards between plates, straight (by eye) outside plates		$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Use Scoris marking tool if in doubt.
7	(a)	Same/ equal Φ		1	Allow: AW
	(b)	Half, B/2		1	Allow: Y is twice X Not: less
8		$\begin{aligned} & 35=125 \times \mathrm{e}^{-4.1 \times 10^{-.-9 t}} \\ & \ln 35 / 125=-4.1 \times 10^{-9} t \\ & t=3.1 \times 10^{8} \mathrm{~s}(=9.7 \text { years }) \end{aligned}$		1	Allow: 1.84 half lives (1) so 9.7 years(1) Allow: Approx two half lives (1) so 10.6 years (1) Allow: Substitution (1) leading to 33.7 kBq (1) after ten years Own value needed for second mark
9	(a)	C		1	
	(b)	$\begin{aligned} & r=7 \times 11^{-15} \times 4^{0.33} / 197^{0.33} \\ & =7 \times 10^{-15} \times 0.27 \\ & r=1.9 \times 10^{-15} \mathrm{~m} \end{aligned}$		1	Or: $\mathrm{r}_{0}=1.2 \times 10^{-15} \mathrm{~m}$ (1) Need own value
			Total	20	

Question			Answer	Marks	Guidance
10	(a)		Complete loop within iron Loop will shorten when coil moves anticlockwise	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow: straighten, AW Ignore: reference to N and S attracting
	(b)	(i)	Iron has high (relative) permeability Curved poles decrease air gap Flux is therefore increased	1 1 1	Not: permeance Allow: iron is a good conductor of flux Allow: curved faces provide for constant force/torque on rotor Allow: flux density/field strength increases
		(ii)	Laminations limit/ reduce eddy currents Eddy currents oppose (existing) flux	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Not: just eddy currents reduce flux Not: flux reduction as a consequence of eddy current heating Allow: eddy currents set up opposing flux
	(c)		Rate of change of flux (linkage) increases so induced emf increases in opposition to current (from supply)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow: rate of cutting flux increases Allow: answers in terms of back emf that demonstrate clear understanding of cause.
			Total	10	

Question			Answer	Marks	Guidance
11	(a)		Radial field Arrows pointing outwards	1 1	Allow: any four correct lines
(b)			$\begin{aligned} & \mathrm{V}=9 \times 10^{9} \times 2.5 \times 10^{-9} / 4 \times 10^{-3} \\ & =5625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Need own value
	(c)	(i)	Taking pairs of points, multiply x and y value values will be constant	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow: replot data as V against $1 / \mathrm{r}$ (1) and showing straight line through origin (1) Allow: V halves as r doubles (1) for more than one pair of points (1) Not: V decreases as rincreases Not: replot y against $1 / x$
		(ii)	$\begin{aligned} & E=V / r \\ & =2800 / 0.0080=350 \times 10^{3} \mathrm{NC}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Method must clearly relate to radial field Or: gradient of graph at 0.0080 m (1) calculation to value in range 300 to $400 \mathrm{kNC}^{-1}$ (1) Not: E = V/d (0 marks)
	(d)		Charges will migrate towards outer edges of sphere increasing distance between the centres of charge	1 1	
			Total	10	

Question			Answer	Marks	Guidance
13	(a)	(i)	To stop collisions (taking energy away from protons)	1	Allow: AW
		(ii)	Force on protons from B-field is at right angles to their direction of motion	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(b)		$\begin{aligned} & 400 \times 1.6 \times 10^{-19} \times 150 \\ & =9.6 \times 10^{-15} \mathrm{~J} \end{aligned}$	1	Method mark
	(c)		$\begin{aligned} & \mathrm{r}=\left(2 \times 1.7 \times 10^{-27} \times 9.6 \times 10^{-15}\right)^{1 / 2} /\left(0.8 \times 1.6 \times 10^{-19}\right) \\ & =0.045 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow: 0.04 Not: 0.040 or 0.05 (rounding errors)
	(d)		Any three from: Gamma factor $=($ rest energy + kinetic energy $) /$ rest energy - Kinetic energy of both particles the same but the proton rest energy is much greater so gamma factor is larger for electron - \quad Calculation of gamma factors: electron $=1.12$ - Calculation of gamma factors: proton = 1.00 - Larger gamma factor for electron means more relativistic behaviour	3	Allow: - Electron faster for same KE (1) - Gamma factor is larger explained using formula (1) First marking point can be implicit in correct calculations Last marking point dependent on previous argument
			Total	9	

Question		Answer	Marks	Guidance
14	(a)	$\begin{aligned} \text { Use of distance } & =(150 / 60) \times 400 \\ & =1000 \mathrm{~m} . \end{aligned}$	1	Method mark. Allow: reverse argument
	(b)	speed is not constant (1) One from: because it accelerates at the start (1) because buoyancy not constant (1) because drag varies (1) because density of atmosphere varies (1) because of vertical component of wind (1) OR: difficult to spot the exact moment of disappearance (1) AW because clouds are diffuse (1) AW	1 1	Allow: other reasonable answers Not: variation of g with altitude Not: just wind
	(c)	Use of $\mathrm{pV} / \mathrm{T}=$ constant Giving $V=0.033 \mathrm{~m}^{3}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Or: correct use of $\mathrm{pV}=\mathrm{nRT}$ or $\mathrm{pV}=\mathrm{NkT}$ Allow: 0.0326 Not: $0.032,0.034$ Correct bald answer scores both marks
		Total	5	

Question			Answer	Marks	Guidance
15	(a)	 (ii)	Any two pairs from... Low density (1) reduces mass/ weight (1) OR Low stiffness/ low Young Modulus (1) Makes balloon flexible/easy to inflate (1) OR Strong/ sufficient breaking stress (1) Balloon must not burst too soon (1) OR Tough/ Not brittle (1) Fabric must not tear/split too soon/when cold (1)	4	Reason must relate to the property Not: light for property but BOD for reason Not: flexible for property but BOD for reason. Not: elastic Not: to lift heavy loads
	(b)		Use of circumference $=\pi \times D$ to establish increase in length $=6 \pi$ or 18.8 m $\text { strain }=x / L=18.8 / 6.28=3 \text { or } 300 \%$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow: $(8-2) / 2=3$ for second mark only
	(c)		$\begin{aligned} & \mathrm{V}=4 / 3 \pi \mathrm{r}^{3}=4.19 \mathrm{~m}^{3} \\ & \mathrm{~m}=\rho \mathrm{V}=5.03 \mathrm{~kg} \\ & B=5.03 \times 9.8=49.3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow: ecf from any stage to next Allow: 49, 49.26 N
	(d)		$\begin{aligned} & \text { Resultant force }=49.3-(1.25 \times 9.8)=37.0 \mathrm{~N} \\ & \mathrm{a}=\mathrm{F} / \mathrm{m}=29.6 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Not: $39.4 \mathrm{~ms}^{-2}-9.8 \mathrm{~ms}^{-2}$ (0 marks) Allow: 30.2 from $50 \mathrm{~N}, 29.4$ from 49N

Questi	Answer	Marks	Guidance
(e)	Examples: Balloon expands as it rises (1) so buoyancy increases (1) so larger acceleration (1) Balloon expands at it rises (1) so drag force increases (1) so smaller acceleration (1) Air density decreases with altitude (1) so buoyancy decreases (1) so smaller acceleration (1) Air density decreases with altitude (1) so drag decreases (1) so larger acceleration (1) Balloon is accelerating (1) so drag force increases (1) so acceleration decreases (1) Colder with altitude (1) so volume/buoyancy reduces (1) so acceleration reduces (1) Atmospheric pressure decreases with altitude (1) so volume/buoyancy increases (1) so acceleration increases (1)	3	Allow: reasonable alternatives QWC: Poorly marshalled arguments cannot lead to more than 2 marks.
	Total	14	

Question			Answer	Marks	Guidance
16	(a)		$1100 \mathrm{~m} / 4352$ pixels $=0.25 \mathrm{~m} /$ pixel	1	Allow: 0.253 Not: 0.252, 0.3
	(b)	(i)	8 bits required (per colour pixel) bits $=4352 \times 3264 \times 3 \times 8=3.4 \times 10^{8}$ bits	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
		(ii)	```3.4\times1\mp@subsup{0}{}{8}}\mathrm{ bits = 0.0426 G bytes (1) => 8 Gbytes / 0.0426 = 187.8, so 187 pictures (1) OR 8 Gbytes = 6.4 < 10 10 bits (1) 6.4 < 10 10 bits/3.4 \times10 bits = 187.8 so 187 pictures (1)```	2	Allow: ecf from (b)(i) Not: 188
			Total	5	

Question		Answer		Marks	Guidance
17	(a)	$\begin{aligned} & \mathrm{v}=(2 \mathrm{E} / \mathrm{m})^{1 / 2} \\ & =4.3 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Calculation in $(\mathrm{M}) \mathrm{eV}=0$ marks POT error -1 e.g. 4.3×10^{4} for missing M
	(b)	$\begin{aligned} & \mathrm{v}=\mathrm{d} / \mathrm{t}=3.5 \times 10^{3} / 0.13 \times 10^{-3}= \\ & 2.69 \times 10^{8} \mathrm{~ms}^{-1} \\ & \text { Then, } \mathrm{v} / \mathrm{c}=2.69 / 3.0=0.897 \text { i.e } 90 \% \end{aligned}$		1 1	Allow: reverse argument Needs own value or clear method
	(c)	$\begin{aligned} & \gamma=1 /\left(1-0.897^{2}\right)^{-1 / 2}(=2.26 \text { or } 2.29) \\ & t=0.13 \times 10^{-3} /\left(1-0.897^{2}\right)^{-1 / 2} \\ & =>t=5.7 \times 10^{-5} \mathrm{~s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Or: Recognition that $\mathrm{t}=\mathrm{t}^{\prime} \gamma$ or $\mathrm{t}^{\prime}=\mathrm{t} / \gamma(1)$
			Total	7	

Question		Answer	Marks	Guidance
18	(a)	$\begin{aligned} & \mathrm{E}=\mathrm{kT}=\mathrm{hc} / \lambda \\ & =>\lambda=\mathrm{hc} / \mathrm{kT}=5.2 \times 10^{-3} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Or: $\mathrm{E}=\mathrm{kT}=3.8 \times 10^{-23}(1)$ Allow: use of $3 \mathrm{kT} / 2$ for full credit ($E=5.7 \times 10^{-23}, \lambda=3.5 \times 10^{-3}$)
	(b)	Range $=600 \mu \mathrm{~K}$ Then, $600 \mu \mathrm{~K} / 2.7 \mathrm{~K}=2.2 \times 10^{-4}=0.022 \%$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Need own value or clear working
	(c)	Reference to early universe mass concentrations/density variation/coalescence of matter/gravity variation formation of galaxies	1 1 1	AW Allow: stars QWC: three marks only awarded if answer is carefully ordered and clear
		Total	7	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

