RECOGNISING ACHIEVEMENT

GCE

Physics B (Advancing Physics)

Advanced GCE
Unit G495: Field and Particle Pictures

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Available in Scoris

Annotation	Meaning
[id	Benefit of doubt given
[Cl	Contradiction
3	Incorrect response
[ECT	Error carried forward
\square	Follow through
[10]	Not answered question
P	Benefit of doubt not given
WT1	Power of 10 error
\square	Omission mark
$\square \square^{11}$	Rounding error
[iF	Error in number of significant figures
\checkmark	Correct response
\square	Arithmetic error
2	Wrong physics or equation

Annotations used in mark scheme

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question		Answer	Marks	Guidance
1		Two correct (1) All correct (1)	2	
2		D	1	
3	(a)	horizontal line in middle of gap	1	
	(b)	$E=7 \times 10^{7} / 500=1.4 \times 10^{5}\left(\mathrm{~V} \mathrm{~m}^{-1}\right)(1)$	1	accept $140000\left(\mathrm{Vm}^{-1}\right)$; accept bald answer
4		$\begin{aligned} & m v=h / \lambda=6.6 \times 10^{-34} / 1 \times 10^{-10}(1) \\ & =6.6 \times 10^{-24}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)(1) \end{aligned}$	2	accept bald answer for 2 marks Do not accept arguments from $E=h f$
5		$\begin{array}{\|l\|} \hline \text { neutron (1) } \\ \text { gluon (1) } \\ \text { electron and neutrino (1) } \\ \hline \end{array}$	3	
6	(a)	turns ratio $=230 / 12=19 .(2)(1)$	1	As this is a one mark question do not penalise rounding error. Accept bald answer. Do not accept fractional ratios. Accept 19:1
	(b)	$50 \mathrm{~Hz}(1)$	1	
7	(a)	(difference) in energy per unit charge(1) of a charge at a given point and at infinity (1)	2	Accept energy per coulomb/one coulomb. Accept work done in moving unit charge from infinity to a point (in the field). Accept statement that potential at infinity is zero for standalone mark.
	(b)	(electric) field strength (at X) (1)	1	Accept electric field. Do not accept 'field'

Question		Answer	Marks	Guidance	
$\mathbf{8}$	(a)		$235 \times-7.6 \mathrm{MeV}=-1786 \mathrm{MeV}(1)$	1	Accept -1790, -1800. Do not penalise lack of negative sign.
	(b)		$-1786-(-8.5 \times 233)(1)=194.5 \mathrm{MeV}(1)$	2	method mark for (233 $\times 8.5)$ evaluation of correct difference from part (a) Allow 1 mark for use of 235 correctly evaluated.(eg 207.5, $211.5)$ Accept bald answer for (2)
$\mathbf{9}$			energy $=18 \times 10^{-3} \times 65 \times 25(1)=29(.3) \mathrm{J}(1)$	2	Accept bald answer for (2) If obviously multiplying by quality factor, 1 mark max.

Question			Answer	Marks	Guidance
10	(a)		Asymptotic to v/c = 1 AW (1)	1	Accept 'graph never reaches 1'. Accept 'v asymptotic to c' Accept 'infinite energy required to reach c' (as this implies asymptote). Do not accept 'v never reaches c' but accept 'v never reaches 1 c' as this refers to the graph.
-	(b)	(i)	$\begin{aligned} & \gamma=4 \times 10^{12}+938 \times 10^{6} / 938 \times 10^{6}(1) \\ & =4,300(1) \end{aligned}$	2	For second mark accept 4265, 4264 Accept bald 4265 for 2 marks. Accept bald 4300 or 4264 for 1 mark
		(ii)	$\begin{aligned} & 4300=1 /\left(1-v^{2} / c^{2}\right)^{1 / 2}(1) \\ & 1-v^{2} / c^{2}=5.4 \times 10^{-8} \\ & v / c=\left(1-5.4 \times 10^{-8}\right)^{1 / 2}(1) \end{aligned}$ v / c evaluated to show that it is more than 0.99 (1)	3	or alternative method $2^{\text {nd }}$ mark can be calculated value of v. Do not penalise rounding error. Can calculate gamma for $\mathrm{v} / \mathrm{c}=0.99$ and show that it is less than value from (b)(i) ORA
	(c)		$\begin{aligned} & v^{2}=2 \times 4 \times 10^{12} \times 1.6 \times 10^{-19} / 2 \times 10^{-6}(1) \\ & v=0.8 \mathrm{~m} \mathrm{~s}^{-1}(1) \end{aligned}$	2	
	(d)	(i)	$\begin{aligned} & \mathrm{T}=\mathrm{J} / \mathrm{m} \mathrm{~s}^{-1} \mathrm{C} \mathrm{~m}(1)=\mathrm{Nm} / \mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{C}=\mathrm{Nm} / \mathrm{m}^{2} \mathrm{~A}(1)=\mathrm{N} \mathrm{~A}^{-1} \\ & \mathrm{~m}^{-1} \end{aligned}$	2	Must be clear
		(ii)	$\begin{aligned} & \mathrm{B}=4 \times 10^{12} \times 1.6 \times 10^{-19} /\left(3 \times 10^{8} \times 1.6 \times 10^{-19} \times 4250\right)(1) \\ & =3.1 \mathrm{~T}(1) \end{aligned}$	2	Accept implicit cancelling of 1.6×10^{-19} Do not accept rounding error of 3.13 Accept 3.14
			Total	12	

Question			Answer	Marks	Guidance
11	(a)		$\begin{aligned} & \text { Mass defect }=0.0060 \mathrm{u}(1) \\ & \mathrm{E}=0.006 \times 1.7 \times 10^{-27} \times 9 \times 10^{16}(1)=9.2 \times 10^{-13} \mathrm{~J}(1) \end{aligned}$	3	Need own value. Allow other routes through. Must show working.
	(b)	(i)	$6 \times 10^{10} \times 9.2 \times 10^{-13}(1)=5.5 \times 10^{-2}(1) \mathrm{W}$	2	Allow 5.4 for two marks. Allow ecf from (a) Allow 1 sf answer
		(ii)	$\begin{aligned} & \mathrm{N}=\mathrm{A} / \lambda=6 \times 10^{10} / 2.5 \times 10^{-10}=2.4 \times 10^{20}(1) \\ & \text { mass }=0.238 \times 2.4 \times 10^{20} / 6 \times 10^{23}=0.095 \times 10^{-3} \mathrm{~kg}(1) \end{aligned}$	2	Need own value. Alternative method: number of nuclei $\times 238 \times 1.7 \times 10^{-27}$ $=9.7 \times 10^{-5} \text {. }$
	(c)		Any four from: Alpha source so no penetration into the patient (of ionising radiation) (1) Long half life so can remain in the body/ doesn't need replacing often Power output fairly constant (over 20 year period)/calculation of power output after twenty years $=4.6 \times 10^{-2} \mathrm{~W}(1)$ - Calculation of 20 year dose of mSv or risk per year of 0.005\%(1) - 20 year risk $=0.1 \%$	4	Do not allow references to penetration through skin. Allow answers based on 3\% per sievert.
			Total	11	

Question			Answer	Marks	Guidance
13	(a)		Loops of correct shape (1)	1	Accept complete loop through magnet. Loops must be symmetrical. Penalise incorrect direction.
	(b)		Line marked when passing through X axis (1)	1	
	(c)	(i)	rate of change of flux $=1.4 / 1500(1)=9.3 \times 10^{-4}(1) \mathrm{Wb} \mathrm{s}^{-1}$	2	Penalise more than 3 sf
		(ii)	Any four from: Either: Induced emf related to change of flux (linkage)/flux cutting/ cutting field lines OR link between induced emf and speed of magnet (since $E=(-) N d \phi d t)(1)$ - Induced emf falls as more of the magnet is inside coil as rate of change of flux decreases (1) - When the magnet is in the centre of the coil there is instantaneously zero rate of change of flux / equal and opposite emfs induced in series. (1) - As magnet leaves coil emf induced in opposite direction as flux is decreasing rather than increasing AW - Maximum negative voltage greater than maximum positive voltage due to acceleration of magnet.	4	Fourth mark dependent on linking arguments to graph. Clear explanation in terms of Lenz's Law acceptable for the fourth bullet point.
	(d)		Similar curve (1) Same phase (1)	2	
			Total	10	
			Section B Total	42	

Question			Answer	Marks	Guidance
15	(a)		Energy = power x time $=3.0 \times 10^{11} \times 10^{-9}=300 \mathrm{~J}$	1	Accept bald answer
	(b)		$\begin{aligned} \Delta \theta & =\mathrm{E} / \mathrm{m} \mathrm{c}=300 /\left(1.5 \times 10^{-3} \times 4200\right)(1) \\ & =50 \mathrm{~K}(1) \end{aligned}$	2	ecf accept bald answer allow 48 K
16	(a)		one $\lambda / 2$ loop	1	
	(b)		$\begin{aligned} & \lambda=2 \times 1.1 \times 10^{-7} \mathrm{~m}(1) \\ & =>\mathrm{f}=\mathrm{c} / \lambda=0.83 \times 10^{8} / 2.2 \times 10^{-7}=3.77 \times 10^{14} \mathrm{~Hz}(1) \end{aligned}$	2	Need own answer Ecf one mark max if $\lambda=1.1 \times 10^{-7}$ leading to $7.54 \times 10^{14} \mathrm{~Hz}$. Dividing this answer by two cancels this mark.
17	(a)		Large range (of wavelength and absorption) (1) Points not be usefully distributed on linear axes (1)	2	
	(b)		$\begin{aligned} & \text { From graph, absorb coeff }=0.01 \mathrm{~cm}^{-1}(1) \\ & I=I_{0} e^{-\mu x}=I_{0} \mathrm{e}^{-0.01 \times 300}(1) \\ & I / / I_{0}=0.0498(1) \\ & =4.98 \% \text { (1) } \end{aligned}$	4	Need own value Or From graph, absorb coeff $=0.01 \mathrm{~cm}^{-1}$ (1) So penetration depth $=100 \mathrm{~cm}$ (1) 3 m is 3 penetration depths (1) So I $=>1 \times(0.37)^{3}=0.05$ (ie 5\%) (1) Pot error leading to incorrect value 2 marks max. Rounding error if round to 4.9%
18	(a)	(i)	Same energy (needed to produce same effect) (1) Energy = power x time time less so more power needed (1)	2	
		(ii)	less time for energy to be conducted/thermal energy to transfer AW	1	
	(b)		$\begin{aligned} & \text { No. of molecules in } 1 \mathrm{~cm}^{3}=6.0 \times 10^{23} / 18(1) \\ & =3.3 \times 10^{22}(1) \\ & \text { In one } \mathrm{cm}^{3}, 10^{21} / 3.3 \times 10^{22}(1) \\ & =0.03(1) \\ & =3 \% \end{aligned}$	4	Number of moles $=0.056$ (1)

Question			Answer	Marks	Guidance
19	(a)		minimises attenuation of beam AW (1)	1	Energy not absorbed Intensity not lost No scattering
	(b)	(i)	$\begin{aligned} & \text { speed of light in glass }=3 \times 10^{8} / 1.2=2.5 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}(1) \\ & \begin{aligned} \mathrm{t} & =\mathrm{d} / \mathrm{v} \end{aligned}=0.75 / 2.5 \times 10^{8} \\ & \\ & \\ & =3.0 \times 10^{-9} \mathrm{~s}(1) \end{aligned}$	2	Bald answer acceptable.
		(ii)	shortest possible distance along fibre AW	1	Accept straight fibre
		(iii)	Calculation of two times: $2.975 \mathrm{~ns} \& 3.025 \mathrm{~ns}$ (1) Gives \% difference of 1.7\%	2	Calculation (1) e.g. based on refractive indices alone gives difference of 1.7 \% (1) Or percentage difference of speeds. Look for rounding variation. Accept bald answer
			Section C Total	38	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
PART OFTHE CAMBRIDGEASSESSMENT GROUP

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

