RECOGNISING ACHIEVEMENT

Physics B (Advancing Physics)

Advanced GCE
Unit G495: Field and Particle Pictures

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations available in Scoris

Annotation	Meaning
[in	Benefit of doubt given
[4:\%	Contradiction
3	Incorrect response
[-¢	Error carried forward
\square	Follow through
[W0]	Not answered question
-	Benefit of doubt not given
区-1	Power of 10 error
(A)	Omission mark
[17	Rounding error
$\Gamma 37$	Error in number of significant figures
\checkmark	Correct response
\square	Arithmetic error
4	Wrong physics or equation

Annotations in Mark Scheme

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
(1)	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Statements which are irrelevant
()	Answers that can be accepted
ecf	Words which are not essential to gain credit
AW	Underlined words must be present in answer to score a mark
ORA forward	
	Or reverse argument

Subject specific Marking Instructions

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

Question			Answer	Marks	Guidance
1	(a)		C	1	
	(b)		$\begin{aligned} & \mathrm{I}=200 \times 1.8 / 400 \\ & =0.90 \mathrm{~A}(1) \end{aligned}$	1	No ecf from 1(a)
2	(a)		neutron	1	
	(b)		neutron	1	
3			Units of $\mathrm{k}=\mathrm{N} \mathrm{C}^{-1} \mathrm{~m}^{2} \mathrm{C}^{-1}(1)\left(\right.$ which $\left.=\mathrm{N} \mathrm{m}^{2} \mathrm{C}^{-2}\right)$	1	Allow unit derived from algebraic rearrangement to $\mathrm{k}=\mathrm{Fr}^{2} / \mathrm{Q}_{1} \mathrm{Q}_{2}$ or $\mathrm{Fr}^{2} / \mathrm{Q}^{2}$
4	(a)		A	1	
	(b)		$\begin{aligned} & \text { mass lost s }{ }^{-1}=\text { power } / \mathrm{c}^{2}=4 \times 10^{26} / 9.0 \times 10^{16}(1) \\ & =4 \times 10^{9} \mathrm{~kg}(1) \end{aligned}$	2	This is the only question for which a sig fig penalty applies. No more than two sig fig for second mark. Bald correct answer to one or two sig fig scores 2. (eg $4 \times$ 10^{9} or 4.4×10^{9}) Bald correct answer to more than two sig fig scores 1. 4.4 recurring scores 1
5	(a)		$\begin{aligned} & V=9.0 \times 10^{9} \times 1.6 \times 10^{-19} / 5.0 \times 10^{-6}(1) \\ & =2.9 \times 10^{-4} \mathrm{JC}^{-1}(1) \end{aligned}$	2	$\begin{aligned} & \text { Allow } V(=\text { Er })=58 \times 5 \times 10^{-6}(1) \\ & =2.9 \times 10^{-4} \mathrm{JC}^{-1}(1) \end{aligned}$ Penalise 1 mark for use of $V=E d$ (uniform field equation) Allow $3 \times 10^{-4} \mathrm{JC}^{-1}, 2.88 \times 10^{-4} \mathrm{JC}^{-1}$ Allow bald answer
	(b)		Zero (1)	1	Ignore unit
	(c)		Twice the value (1)	1	Accept $2 x$ value from 5(a) and allow ecf. Ignore unit and any spurious justifications.

Question			Answer	Marks	Guidance
13			Any two from: Stress concentration at crack (1) Rock fails when local stress at crack exceeds fracture stress (1) Crack propagates through material (1) Under tensile load (1) (clean break with) no plastic flow (1)	2	These points may be made by annotated diagrams Accept breaking stress.
14	(a)		$t=2 \pi r / v=3.72$ hours (or 3 hours 43 minutes) (1)	1	Answer just in seconds is not sufficient Credit any valid comparison.
	(b)		$\begin{aligned} & 6000 \mathrm{~ms}^{-1} / 1 \mathrm{~s} \text { and } 3000 \mathrm{~ms}^{-1} / 0.5 \mathrm{~s}(1) \\ & \text { Both evaluated to } 6000(\mathrm{~m}) \text {, or equated (1) } \end{aligned}$	2	Accept double v and double f(1) gives same λ as $v=f \lambda$ (1) Units, if given, must be correct otherwise maximum one mark
15			Transverse waves produce vibrations at right angles to direction of travel (1) These vibrations can be in two perpendicular directions to each other (1) Longitudinal waves produce vibrations in direction of travel (so in third spatial dimension) (1)	3	Correct, labelled diagrams can gain all three marks.; (-1 if T and L not labelled); (-1 if direction of travel not labelled). Confusing longitudinal waves with transverse waves scores zero.
16			$\begin{aligned} \mathrm{v}_{2} & =\mathrm{v}_{1} \times\left(\sin \theta_{2} / \sin \theta_{1}\right)(1) \\ & =6.0 \mathrm{~km} / \mathrm{s} \times(\sin 21 / \sin 30)(1) \\ & =4300 \mathrm{~m} \mathrm{~s}^{-1}(1) \end{aligned}$	3	Correct bald answers gain 3 marks. No ecf if angles are reversed.
			13 to 16 Total	11	

Question		Answer	Marks	Guidance		
$\mathbf{1 7}$	(a)	$\begin{array}{l}\text { (If driving frequency of earthquakes equals that of natural } \\ \text { frequency of seismometer then) resonance occurs (1) } \\ \text { resulting in production of large amplitude vibrations of } \\ \text { seismometer (1) }\end{array}$	2	Do not credit constructive interference.	$]$	(b)
:---						

Question		Answer	Marks	Guidance
$\mathbf{1 8}$	(a)	Ref to F = ma (1) Small F and large m combine to give small a (1)	2	
	(b)	Displacement small so angle small (1) Force equals mg sin α (1)	2	Allow evaluated acceleration based estimated displacement substituted in SHM equation (1) If force then evaluated using sensible estimated mass (1)

Question		Answer	Marks	Guidance
$\mathbf{1 9}$	(a)	each difference of 1 is factor of 10 (1) so 100 times (1)	2	Accept $10^{6} / 10^{4}(1)=10^{2}(1)$
	(b)	$100^{3 / 2}(1)$ $=1000(1)$	2	Allow for ecf Accept bald answer
		Question 18 \& 19 Total	$\mathbf{8}$	

Question			Answer	Marks	Guidance
20	(a)		(Movement causes) change of magnetic flux linkage (1) Induced emf related to the rate of change of flux (linkage or in the coil) (1)	2	Accept flux in coil changes Accept flux (line) cutting arguments for both marks e.g. The coil cuts flux lines (1) Emf depends on rate of cutting flux lines (1).
	(b)	(i)	$\begin{aligned} \text { Flux } & =B \times A=0.15 \times 4 \times 10^{-4}(1) \\ & =6 \times 10^{-5}(\mathrm{~Wb})(1) \end{aligned}$	2	1 mark max if POT error
		(ii)	$\begin{aligned} \text { Flux linkage } & =200 \times 6 \times 10^{-5} \\ & =0.012 \mathrm{~Wb} \text { turn } \end{aligned}$	1	Accept use of $5 \times 10^{-5} \mathrm{~Wb}$ for value of flux, leading to flux linkage of 0.01 Wb Ecf from (b)(i)
		(iii)	$\begin{aligned} & \text { Change in flux linkage }=0.012 / 2=6 \times 10^{-3} \mathrm{~Wb} \text { turn }(1) \\ & \text { Time taken for change }=3 \times 10^{-3} / 1.8 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \\ & =1.7 \mathrm{~s}(1) \\ & \begin{array}{c} \text { (Magnitude of) induced emf }=\Delta \mathrm{N} \phi / \Delta \mathrm{t}(1) \\ =3.5 \mathrm{mV}(1) \end{array} \end{aligned}$	4	Ecf from (b)(ii) and within this part of the question. Allow implicit use of equation Ignore sign Accept 4 mV .. Accept 3.6 mV given by $\mathrm{t}=1.67 \mathrm{~s}$. Correct bald answer gains four marks. $3.5 \mathrm{mV}, 3.6 \mathrm{mV}, 4 \mathrm{mV}$ score 4 marks $7 \mathrm{mV}, 7.1 \mathrm{mV}, 7.2 \mathrm{mV}$ score 3 marks 5.9 mV scores 3 marks
			Total	9	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

