# Physics B (Advancing Physics) 

## Advanced GCE A2 H559

## Mark Scheme for the Units

## January 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

## CONTENTS

# Advanced GCE Physics B (Advancing Physics) (H559) <br> Advanced Subsidiary GCE Physics B (Advancing Physics) (H159) 

## MARK SCHEMES FOR THE UNITS

Unit/Content Page
G491 Physics in Action ..... 1
Grade Thresholds ..... 9

## G491 Physics in Action

| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | a |  | $C^{-1} \checkmark$ | 1 | not A |
| 1 | b |  | $J \mathrm{C}^{-1} \checkmark$ | 1 | not V |
| 2 |  |  | diameter in pixels $D 3300<D<3800$ pixels $\checkmark$ <br> $400 \times$ diameter in pixels $/ 1000(\mathrm{~km}) \checkmark \mathrm{m}$ | $1$ $1$ | accept direct estimate method accept ruler method $7 \mathrm{~cm} / 8 \mathrm{~cm} \times 4100 \approx 3600$ pixels <br> method ecf on other pixel values $\leq 4100$ must convert to km accept correct bare final diameter estimate within range $1.3 \times 10^{3}$ to $1.5 \times 10^{3}(\mathrm{~km})$ for 2 marks |
| 3 | a |  |  | 1 | 3 correct links for 1 mark otherwise zero |
| 3 | b |  | same period of waveform / same lowest frequency / lowest component of spectrum $\checkmark$ | 1 | ```accept same fundamental frequency not same wavelength / any reference to wavelength not same main frequency not all have 500 Hz``` |
| 4 | a |  | $\begin{aligned} R & =V / I=90 / 0.5 \times 10^{-3} \checkmark \\ & =180000(\Omega) \checkmark \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | method evaluation accept $180(\mathrm{k} \Omega) / 1.8 \times 10^{5}(\Omega)$ allow ecf on powers of ten e.g. $180(\Omega)$ for missing mA |


| Question |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 4 | b | $\begin{aligned} & N=I / e /=Q t / e /= \\ & 0.5 \times 10^{-3} / 1.6 \times 10^{-19} \\ & =3.1(3) \times 10^{15} \\ & \left(\text { electrons s }{ }^{-1}\right. \text { ) } \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$ | method accept symbols / words / correct numbers evaluation allow both marks for correct evaluation if no method |
| 5 | a | $\begin{aligned} & =44100 \times 16 \times 2 / 8= \\ & 176400(\text { bytes s-1) } \end{aligned}$ | 1 | accept also $176000 / 180000 / 1.8 \times 10^{5}$ (bytes s $^{-1}$ ) |
| 5 | b | ratio of voltages $=0.2 / 2 \times 10^{-6}=10^{5} \checkmark$ $\log _{2}\left(10^{5}\right)=16.6 \quad$ (so 16 bits adequate) / $2^{16}=65536<10^{5} / 2^{17}=131072>10^{5} \checkmark$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | allow one mark for stating / unsuccessful attempt to evaluate correct equation: $b \leq \log _{2}\left(V_{\text {total }} / V_{\text {noise }}\right) \quad / 2^{\text {b }} \leq\left(V_{\text {total }} / V_{\text {noise }}\right)$ accept ora i.e. calculation of voltage resolutions with 16 or 17 bits with sensible comment for full credit not any credit for only qualitative answers |
| 6 | $\begin{aligned} & \hline \mathbf{a} \\ & \mathbf{b} \end{aligned}$ | $\begin{aligned} & (G=1 / 2.5)=0.4 \checkmark \mathrm{~S} \checkmark \\ & \left(G_{\text {total }}=3 \times 0.4\right)=1.2 \checkmark \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 2 \\ & 1 \end{aligned}$ | accept correct answer without method allow unit mark from either line but credit in a accept $\Omega^{-1} / \mathrm{AV}^{-1}$ for unit mark not unit mark for con units in $\mathbf{a}$ and $\mathbf{b}$ |
| 7 | a | constant ratio / factor (of scale divisions) $\checkmark$ | 1 | accept $\times 10$ / times $10 /$ goes up in powers of ten not goes up in tens |
| 7 | b | glasses have smaller range of cost and a smaller range of recyclable fraction than metals $\checkmark$ | 1 | must mention both features and comparison explicitly clear not any similarity ora |
| 7 | c | metals can be melted or reformed more easily $\checkmark$ <br> / metals are easier to separate e.g. by magnet / ceramics undergo irreversible change once formed but metals don't | 1 | allow any sensible reasoned comparison pro metal / anti ceramics identifying any problem with recycling not metals are malleable / ceramics are brittle ignore incorrect physics if basic idea is correct e.g. bonding reasoning |
|  |  | Section A total | 19 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | a |  | neoprene has (fairly) uniform stiffness / neo stiffness increases slightly (with strain) rubber has more variable stiffness specific qualification of rubber graph into either 2 or 3 regions e.g. stiff then stiffer or stiff then less stiff then more stiff $\checkmark$ rubber is harder to stretch than neo / neoprene easier to pull | 1 <br> 1 <br> 1 | any 3 out of 4 correct points: at least one from second material take stiffness to mean difficulty to stretch accept discussion of stress / force / difficulty of stretching remember $6 \times$ original length means strain $=5$ not neoprene fractures at strain greater than 6 not any credit or mention of quicker / speed not double award for a statement repeated as its converse |
| 8 | bi |  | $\begin{aligned} & (E=\Delta \text { stress } / \Delta \text { strain })=30 \times 10^{6} / 4 \checkmark \mathrm{~m} \\ & =7.5 \times 10^{6}(\text { Pa }) \checkmark \mathrm{e} \\ & \text { standalone mark for correct SF } \checkmark 2 \mathrm{SF} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | accept gradient at $(4,30)$ giving ( 1.5 to 1.9$) \times 10^{7} \mathrm{~Pa}$ not taken from wrong graph treat SF mark as standalone for other incorrect evaluations allow missing M as 1 error so 7.5 Pa scores 2 by ecf allow 3 marks for bare answer $7.5 \times 10^{6}(\mathrm{~Pa})$ |
| 8 | ii |  | $\begin{aligned} & \text { less since } 17.5 \times 10^{6} / 3=5.8(3) \times 10^{6} \\ & 5.8(3) \times 10^{6}<7.5 \times 10^{6} \checkmark \end{aligned}$ | 1 | accept less since gradient is less / less since graph curves upwards (beyond strain of 3) / less since stress is a smaller proportion of the strain must have less and reason |
| 8 | ci |  | strain $=80 \mathrm{~cm} / 20 \mathrm{~cm}=4 .(0) \checkmark$ | 1 | not 5 |
| 8 | ii |  | stress $=18 \mathrm{MPa} \checkmark \quad$ (from rubber graph) $A$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | allow ecf from (i) e.g. strain of $5.0 \Rightarrow 29 \mathrm{MPa}$ and $A=1.0(3) \times 10^{-6} \mathrm{~m}^{2}$ for 3 <br> accept ecf on dropped $M$ for $1.7 \mathrm{~m}^{2}$ for 2 marks allow max $1(A=F /$ stress $)$ if correct stress taken from wrong graph |
|  |  |  | Total | 11 |  |



\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c}{ Question } \\
\hline 10 \& ai
\end{tabular}} \& Expected Answers \& Marks \& Additional Guidance \\
\hline 10 \& ai \& \[
\begin{aligned}
\& R=1.3 \times 10^{-10} \mathrm{~m} \checkmark \mathrm{~m} \\
\& V=(4 / 3) \pi R^{3}=9.2(1) \times 10^{-30} \mathrm{~m}^{3} \checkmark \mathrm{e}
\end{aligned}
\] \& 1
1 \& \(R=D / 2\) explicit for first method mark accept \(R=(2.1 \mathrm{~nm} / 8) / 2=1.3(1) \times 10^{-10} \mathrm{~m}\) must evaluate correctly for \(2^{\text {nd }}\) 'show that' mark allow \(9.47 \times 10^{-30} \mathrm{~m}^{3}\) based on values \(2.1 \mathrm{~nm} / 8\) given bare correct answer scores 1 \\
\hline 10 \& aii \& \[
\begin{aligned}
(\text { density } \& \left.=9.3 \times 10^{-26} / 9.2 \times 10^{-30}\right) \\
\& =1.0(1) \times 10^{4}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \quad \checkmark \mathrm{e}
\end{aligned}
\] \& 1 \& accept \(1.0(3) \times 10^{4}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)\) by ecf on given volume in \(\mathbf{i}\) accept \(0.98(2) \times 10^{4}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)\) by ecf on allowed volume from \(\mathbf{i}\) not any other ecf from \(\mathbf{i}\) \\
\hline 10 \& iii \& \[
\begin{aligned}
\text { (density } \& =1.26 /(0.04 \times 0.05 \times 0.08)) \\
\& =7900\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \checkmark \text { e } \quad(<\text { aii })
\end{aligned}
\] \& 1 \& accept \(7.8(8) \times 10^{3} \quad / 7875\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)\) density comparison not needed for the mark \\
\hline 10 \& b \& \begin{tabular}{l}
spheres do not fit perfectly together / there are gaps between them copper surface in (a) decreases the natural spacing in iron crystal measurement in (a) done at a lower temp. so atoms closer together \\
volume per atom is bigger than calculated in (ai)
\end{tabular} \& 1

1 \& AW ora throughout accept stacked spheres do not fill the whole of the space taken up by metal <br>

\hline 10 \& c \& | change in structure identified e.g. atoms closer (c) / more densely packed |
| :--- |
| consequent change in properties identified e.g. so denser / so harder / so stronger / so stiffer | \& 1

1 \& | AW throughout minimum answer: e.g. atoms closer together |
| :--- |
| $\therefore$ density rises accept conductivity rises or falls |
| QWC mark for con next page | <br>

\hline
\end{tabular}

| Question |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 10 | c | consequent change in properties clearly explained <br> e.g. because same mass in smaller volume / atoms bonded to more close neighbours | 1 | QWC <br> because for fixed mass volume falls / conductivity rises because charge carrier density increases / conductivity falls because scattering probability rises ora for resistivity <br> $3^{\text {rd }}$ mark is for QWC: is given for reference to structural changes related to diagram followed by attempt to explain consequence even if some physics details incorrect |
|  |  | Total | 9 |  |



| 11 | di | $P=I^{2} R=0.5^{2} \times 260 \quad \checkmark \mathrm{~m}$ <br> $=65(\mathrm{~W}) \checkmark \mathrm{e}$ | 1 <br> 1 |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{1 1}$ | ii | thermistor will heat up (rapidly) and its <br> resistance will rise (significantly, and current <br> fall) $\checkmark$ | 1 | both points for 1 mark minimum answer: heats and $R$ rises |
|  |  | Total | $\mathbf{1 1}$ |  |
|  | Section B total: | $\mathbf{4 1}$ |  |  |

## Grade Thresholds

Advanced GCE Physics B H159 H559
January 2009 Examination Series
Unit Threshold Marks

| Unit |  | Maximum <br> Mark | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G491 | Raw | 60 | 39 | 33 | 28 | 23 | 18 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |

## Specification Aggregation Results

No aggregation was available in this session.

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

