13.3 Special Relativity

Past Paper Questions

- Describe and explain the use of radar-type measurements to determine distances within the solar system; how distance is measured and defined in units of time, assuming the relativistic principle of the invariance of the speed of light.
- Describe and explain effect of relativistic time dilation using the relativistic factor $\gamma = \frac{1}{\sqrt{1 v^2/c^2}}$

G494 Jan 2010

- 4 The relativistic time dilation factor γ is given by $\gamma = \frac{1}{\sqrt{1 \frac{v^2}{c^2}}}$.
 - (a) Show that the value of γ for a particle moving in a beam at a relative speed of $2.0 \times 10^8 \, \text{m} \, \text{s}^{-1}$ is about 1.3.

$$c = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}$$

(b) The particle is unstable and decays with a half-life $T_{1/2}$ of 8.2 × 10⁻⁷ s when it is at rest. Calculate the observed half-life of the particles moving in the beam.

$$T_{1/2} = \dots$$
 s [1]

[1]

G494 June 2015

3 The half-life of π^+ mesons at rest in a laboratory is 18 ns. When a beam of fast-moving π^+ mesons move through the laboratory their measured half-life becomes 42 ns.

By calculating the relativistic factor γ for the π^+ mesons in the beam, determine their speed ν through the laboratory.

$$c = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}$$

$$v = \dots m s^{-1}$$
 [3]

G494 Jan 2012

12 Fig. 12.1 shows the worldline of a spacecraft which passes the Earth and then returns.

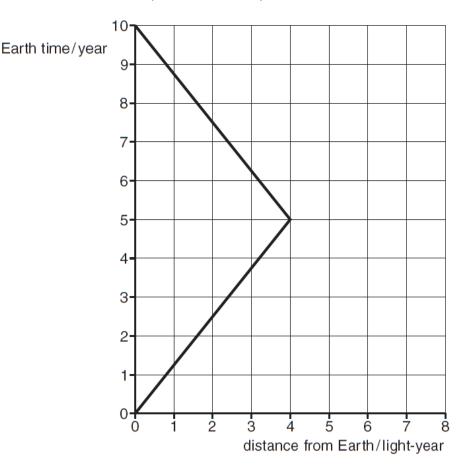


Fig. 12.1

Clocks on the Earth and spacecraft are zeroed at the instant that the spacecraft passes the Earth.

- (a) The worldline for the spacecraft is a straight line until t = 5 year. What does this tell you about the motion of the spacecraft?
- (b) A single pulse of light is sent towards the spacecraft from the Earth when the Earth clock reads t = 1.0 year. It reflects off the spacecraft and returns to Earth.
 - (i) Why is the worldline for light always at 45° on Fig. 12.1?

(ii) Draw the complete worldline of the pulse of light on Fig. 12.1.

[1]

(c)	The arrival of the pulse of light at the spacecraft is the signal for it to turn around and return to the Earth.			
	(i)	•		mes of emission and reception of the nt-year from the Earth when the pulse
				[2]
	(ii)	•		he time of emission and return of the then the Earth clock reads $t = 5.0$ year.
				[2]
	(iii)		the spacecraft rela	ative to the Earth is $2.4 \times 10^8 \mathrm{ms^{-1}}$.
(d)	(i)	$c = 3.0 \times 10^8 \text{m s}^{-1}$ Show that the time dilation fact velocity $v = 2.4 \times 10^8 \text{m s}^{-1}$ is above	orγfor a spacec out 1.7.	[1] craft travelling relative to the Earth at
	(ii)	[1] Here are some possible times in year for the round trip according to observers on the spacecraft. Put a ring around the correct value.		
		6.0 8.0	10	17 [1]

G494 June 2016

8 The graph of Fig. 8.1 shows a time-distance graph of an unstable particle as it passes through a laboratory.

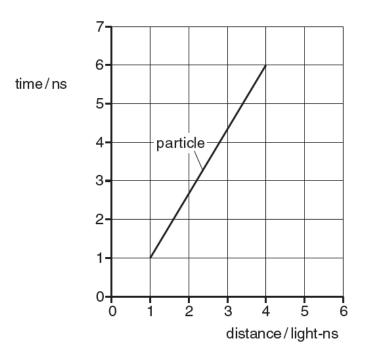


Fig. 8.1

The particle is produced at time 1.00 ns, measured by a clock in the laboratory. The particle decays at time 6.0 ns, giving it a life time of 5.0 ns.

(a) Show that the speed of the particle through the laboratory is about $2 \times 10^8 \,\mathrm{m \, s^{-1}}$. $c = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}$

(b) Calculate the relativistic factor γ , and determine the life time of this particle if it had been at rest in the laboratory.

life time = ns [2]

[1]

G494 June 2017

6		Muons have a half-life of about 1.5 μs at rest. The observed half-life of muons produced from cosmic rays is about 7.5 μs .			
	(a)	Calculate the relativistic factor γ of the muons produced from cosmic rays.			
		relativistic factor =[1]			
	(b) Calculate the speed of the muons produced from cosmic rays.				
		$c = 3.0 \times 10^8 \mathrm{ms^{-1}}$			
		-n-a-d			
		speed = ms ⁻¹ [2]			

Specimen 557/01

Your answer

34 The half-life of a muon at rest is 1.52 µs. Muons in cosmic rays are observed to have half-lives of $10.4 \mu s.$ Calculate the velocity of the muons in cosmic rays. velocity = $m s^{-1}$ 30 The relativistic factor $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ Which statement about this factor is correct? At the speed of sound γ is close to zero. В $\gamma \to 1$ as $v \to c$. γ predicts the time dilation factor so that moving clocks run slower as $v \rightarrow c$. С γ^2 is the factor by which the total energy of a moving particle is greater than its rest energy.

[1]

H557/02 2017

6 This question is about muon decay. Muons are charged leptons. They are formed by cosmic rays interacting with the upper atmosphere.

The decay equation of a negative muon, μ^- is:

$$\mu^- \rightarrow e^- + \overline{\nu} + \nu$$

where $\overline{\nu} + \nu$ represent an antineutrino and a neutrino respectively.

(c) Muons travel through the atmosphere at 98% of the speed of light.

The half-life of a muon at rest is about 1.5 × 10⁻⁶ s. Show that about 0.0005% of the original muons will remain after travelling 8 km through the atmosphere, ignoring relativistic effects.

[3]

(d)	(i)	In a measurement it is found that about 9% of the muons remain after travelling through 8km of atmosphere. Explain why a greater number of muons remain than suggested by the non-relativistic calculation in (b) .
		[3]

(ii) Use your answer to (c) and the measured value of 9% of muons remaining after passing through 8 km of atmosphere to calculate the relativistic factor γ for the muons.